Benchmark Leaderboard
Compare model performance across multiple metrics and datasets
Dataset:
Rank by:
View:
Model Rankings
Dataset: Set_1 • Ranked by Q-Error
| Rank | Model | Year | Type | Q-Error | MAE | Links |
|---|---|---|---|---|---|---|
| 1 | PPGN | 2021 | ML-based | 1.10 | 0.08 | |
| 2 | DeSCo | 2024 | ML-based | 1.15 | 0.09 | |
| 3 | ESC-GNN | 2024 | ML-based | 1.18 | 0.09 | |
| 4 | GNNAK | 2022 | ML-based | 1.20 | 0.10 | |
| 5 | IDGNN | 2022 | ML-based | 1.22 | 0.11 | |
| 6 | ESCAPE | 2017 | Exact | 1.23 | 0.12 | |
| 7 | I2GNN | 2022 | ML-based | 1.24 | 0.12 | |
| 8 | DeSCo-ST | 2024 | ML-based | 1.25 | 0.12 | |
| 9 | EVOKE | 2020 | Exact | 1.28 | 0.14 | |
| 10 | GNN | 2019 | ML-based | 1.30 | 0.15 | |
| 11 | MOTIVO | 2019 | Approx. | 1.33 | 0.16 |
Visualization
Performance Comparison
Compare top models across key metrics